Advanced filters
Fetch a subset of dataset based on a specified criteria
Filters are great tools to retrieve a subset of documents whose data match the criteria specified in the filter.
This can be applied to different types of data (text, numerics, dates) as well as different fields.
An example of results for filtering "Lenovo" products all inserted into the database after "01/01/2020" is shown in the image below.

Example output of filtering Lenovo products all inserted into the database after 01/01/2020
Another example is in an e-commerce dataset, we can retrieve all products:
- with prices between 200 and 300 dollars
- with the phrase "free return" included in
description
field - that are produced after January 2020
Filters help us find what we need.
Filters are great tools to retrieve a subset of documents whose data match certain criteria. This allows us to have a more fine-grained overview of the data since only documents that meet the filtering condition(s) will be displayed.
How to form an advanced filter on Relevance AI?
On Relevance AI's platform, advanced filters are often marked with the filter sign or a link as shown in the image below:

Relevance AI - how to find the advanced filter setup
Advanced filter components
There are four different components to set up an advanced filter:
Field to filter
(i.e. the data filed in the document you want to apply the filter to)Filter type
(i.e. the type of filter you want to apply - whether it is date/numeric/text etc.)Condition
(i.e. operators such as greater than or equal)Filter value
(dependent on the filter type but decides what value to filter on)

Relevance AI - The UI for setting up an advance filter.
Filter types
Supported filter types at Relevance AI are listed below.

Relevance AI - Filter types
Filter conditions
Relevance AI covers all common conditions/operators as shown in the image below:

Relevance AI - Filtering conditions
We will explain each filter in the next pages starting with Contains.
Updated 3 months ago